互斥一定独立吗
教育院校 / 高中院校 / 公立高中
作者:91搜课网
2021-11-25 15:59

不一定。如;设事件A.B都是概率不为0的事件,且两个事件互斥,则p(AB)=0;若事件A,B是独立的,则P(AB)=P(A)P(B),但已知事件A,B都是概率不为0的事件 ,所以P(A)P(B)不等于0,则P(AB)=P(A)P(B)是不成立的。可证,互斥的事件不一定独立。
扩展资料
1、互斥事件定义中事件A与事件B不可能同时发生是指若事件A发生,事件B就不发生或者事件B发生,事件A就不发生。如,粉笔盒里有3支红粉笔,2支绿粉笔,1支黄粉笔,现从中任取1支,记事件A为取得红粉笔,记事件B为取得绿粉笔,则A与B不能同时发生,即A与B是互斥事件。
2、对立事件的定义中的事件A与B不能同时发生,且事件A与B中“必有一个发生”是指事件A不发生,事件B就一定发生或者事件A发生,事件B就不发生。如,投掷一枚硬币,事件A为正面向上,事件B为反面向上,则事件A与事件B必有一个发生且只有一个发生。所以,事件A与B是对立事件,但1中的事件A与B就不是对立事件,因为事件A与B可能都不发生。事件A的对立事件通常记作A。